

Abstracts

Characterization and Simulation of Bi-Quadratic Coplanar Waveguide Tapers for Time-Domain Applications

W. Thomann, B. Isele, F. Stockeler, R. Weigel and P. Russer. "Characterization and Simulation of Bi-Quadratic Coplanar Waveguide Tapers for Time-Domain Applications." 1993 MTT-S International Microwave Symposium Digest 93.2 (1993 Vol. II [MWSYM]): 835-838.

The design and performance of a novel coplanar waveguide (CPW) taper for picosecond pulse applications is described. We have investigated tapers with largely differing widths varying from 62.5 μm to 900 μm . The circuit characteristics were simulated both in time domain and frequency domain using a 3D transmission-line-matrix (TLM) method. We found an optimum bi-quadratic shape which reduces the reflections from more than 5 % to below 2 % in comparison to a linear taper. The circuits were measured in the frequency range up to 40 GHz with a wafer prober. At 40 GHz, the insertion loss values were less than 0.4 dB. For a double taper risetimes of 6.4 ps were achieved which correspond to a bandwidth of 55 GHz.

[Return to main document.](#)